গণিতের বিখ্যাত উপপাদ্য/e একটি অমূলদ সংখ্যা

testwiki থেকে
imported>MdsShakil কর্তৃক ১৮:১৭, ১ নভেম্বর ২০২২ তারিখে সংশোধিত সংস্করণ
(পরিবর্তন) ← পূর্বের সংস্করণ | সর্বশেষ সংস্করণ (পরিবর্তন) | পরবর্তী সংস্করণ → (পরিবর্তন)
পরিভ্রমণে চলুন অনুসন্ধানে চলুন

অয়লারের সংখ্যা e এর সিরিজ উপস্থাপনা

e=n=01n!

প্রমাণ করতে ব্যবহার করা যেতে পারে যে e অযৌক্তিক। e এর অনেকগুলি উপস্থাপনার মধ্যে, এটি সূচকীয় ফাংশনের জন্য টেলর সিরিজ ey যা y = 1 এ মূল্যায়ন করা হয়েছে।

প্রমাণের সারাংশ

এটি দ্বন্দ্ব দ্বারা একটি প্রমাণ। প্রাথমিকভাবে e কে a/b ফর্মের একটি মূলদ সংখ্যা বলে ধরে নেওয়া হয়। তারপরে আমরা e প্রতিনিধিত্বকারী সিরিজের একটি প্রস্ফুটিত পার্থক্য x বিশ্লেষণ করি এবং এর কঠোরভাবে ছোট bতম আংশিক যোগফল, যা সীমিত মান e-এর আনুমানিক। ম্যাগনিফাইং ফ্যাক্টরটিকে b হতে বেছে নেওয়ার মাধ্যমে, ভগ্নাংশ a/b এবং bম আংশিক যোগফল পূর্ণসংখ্যায় পরিণত হয়, তাই x হতে হবে একটি ধনাত্মক পূর্ণসংখ্যা। যাইহোক, সিরিজের উপস্থাপনার দ্রুত একত্রিত হওয়া বোঝায় যে বিবর্ধিত অনুমান ত্রুটি x এখনও 1 এর থেকে কঠোরভাবে ছোট। এই দ্বন্দ্ব থেকে আমরা অনুমান করি যে e অযৌক্তিক।

প্রমাণ

ধরি, e একটি মূলদ সংখ্যা। তারপর আছে ধনাত্মক পূর্ণসংখ্যা a এবং b যেমন e = a/b

সংখ্যা সংজ্ঞায়িত করুন

 x=b!(en=0b1n!)

দেখতে যে x হল একটি পূর্ণসংখ্যা, এই সংজ্ঞায় e = a/b প্রতিস্থাপন করুন

x=b!(abn=0b1n!)=a(b1)!n=0bb!n!.

প্রথম পদটি একটি পূর্ণসংখ্যা, এবং প্রতিটি পদের জন্য nb থেকে যোগফলের প্রতিটি ভগ্নাংশ একটি পূর্ণসংখ্যা। তাই x একটি পূর্ণসংখ্যা।

আমরা এখন প্রমাণ করি যে 0 <x < 1। প্রথমে, x-এর সংজ্ঞায় e-এর উপরোক্ত সিরিজ উপস্থাপনা সন্নিবেশ করান।

x=n=b+1b!n!>0.

nb + 1 সহ সমস্ত পদের জন্য আমাদের উপরের অনুমান আছে

b!n!=1(b+1)(b+2)(b+(nb))1(b+1)nb,

যা এমনকি প্রতিটি nb + 2 এর জন্য কঠোর। যোগফলের সূচককে k = nb-এ পরিবর্তন করা এবং অসীমের জন্য সূত্র ব্যবহার করা জ্যামিতিক সিরিজ, আমরা প্রাপ্ত

x=n=b+1b!n!<k=11(b+1)k=1b+1(111b+1)=1b1.

যেহেতু 0 এবং 1 এর মধ্যে কঠোরভাবে কোন পূর্ণসংখ্যা নেই, আমরা একটি দ্বিধায় পৌঁছেছি তাই e-কে অবশ্যই অমূলদ হতে হবে।

টেমপ্লেট:বইয়ের বিষয়শ্রেণী